Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Am Dent Assoc ; 154(3): 194-205, 2023 03.
Article in English | MEDLINE | ID: covidwho-2309842

ABSTRACT

BACKGROUND: Autopsy has benefited the practice of medicine for centuries; however, its use to advance the practice of oral health care is relatively limited. In the era of precision oral medicine, the research autopsy is poised to play an important role in understanding oral-systemic health, including infectious disease, autoimmunity, craniofacial genetics, and cancer. TYPES OF STUDIES REVIEWED: The authors reviewed relevant articles that used medical and dental research autopsies to summarize the advantages of minimally invasive autopsies of dental, oral, and craniofacial tissues and to outline practices for supporting research autopsies of the oral and craniofacial complex. RESULTS: The authors provide a historical summary of research autopsy in dentistry and provide a perspective on the value of autopsies for high-resolution multiomic studies to benefit precision oral medicine. As the promise of high-resolution multiomics is being realized, there is a need to integrate the oral and craniofacial complex into the practice of autopsy in medicine. Furthermore, the collaboration of autopsy centers with researchers will accelerate the understanding of dental, oral, and craniofacial tissues as part of the whole body. CONCLUSIONS: Autopsies must integrate oral and craniofacial tissues as part of biobanking procedures. As new technologies allow for high-resolution, multimodal phenotyping of human samples, using optimized sampling procedures will allow for unprecedented understanding of common and rare dental, oral, and craniofacial diseases in the future. PRACTICAL IMPLICATIONS: The COVID-19 pandemic highlighted the oral cavity as a site for viral infection and transmission potential; this was only discovered via clinical autopsies. The realization of the integrated autopsy's value in full body health initiatives will benefit patients across the globe.


Subject(s)
Biological Specimen Banks , COVID-19 , Humans , Autopsy , Pandemics , Oral Health
2.
Am J Pathol ; 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2274189

ABSTRACT

Ophthalmic manifestations and tissue tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported in association with coronavirus disease 2019 (COVID-19), but the pathology and cellular localization of SARS-CoV-2 are not well characterized. The objective of this study was to evaluate macroscopic and microscopic changes and investigate cellular localization of SARS-CoV-2 across ocular tissues at autopsy. Ocular tissues were obtained from 25 patients with COVID-19 at autopsy. SARS-CoV-2 nucleocapsid gene RNA was previously quantified by droplet digital PCR from one eye. Herein, contralateral eyes from 21 patients were fixed in formalin and subject to histopathologic examination. Sections of the droplet digital PCR-positive eyes from four other patients were evaluated by in situ hybridization to determine the cellular localization of SARS-CoV-2 spike gene RNA. Histopathologic abnormalities, including cytoid bodies, vascular changes, and retinal edema, with minimal or no inflammation in ocular tissues were observed in all 21 cases evaluated. In situ hybridization localized SARS-CoV-2 RNA to neuronal cells of the retinal inner and outer layers, ganglion cells, corneal epithelia, scleral fibroblasts, and oligodendrocytes of the optic nerve. In conclusion, a range of common histopathologic alterations were identified within ocular tissue, and SARS-CoV-2 RNA was localized to multiple cell types. Further studies will be required to determine whether the alterations observed were caused by SARS-CoV-2 infection, the host immune response, and/or preexisting comorbidities.

3.
Front Immunol ; 13: 841126, 2022.
Article in English | MEDLINE | ID: covidwho-1775675

ABSTRACT

The antibody profile against autoantigens previously associated with autoimmune diseases and other human proteins in patients with COVID-19 or multisystem inflammatory syndrome in children (MIS-C) remains poorly defined. Here we show that 30% of adults with COVID-19 had autoantibodies against the lung antigen KCNRG, and 34% had antibodies to the SLE-associated Smith-D3 protein. Children with COVID-19 rarely had autoantibodies; one of 59 children had GAD65 autoantibodies associated with acute onset of insulin-dependent diabetes. While autoantibodies associated with SLE/Sjögren's syndrome (Ro52, Ro60, and La) and/or autoimmune gastritis (gastric ATPase) were detected in 74% (40/54) of MIS-C patients, further analysis of these patients and of children with Kawasaki disease (KD), showed that the administration of intravenous immunoglobulin (IVIG) was largely responsible for detection of these autoantibodies in both groups of patients. Monitoring in vivo decay of the autoantibodies in MIS-C children showed that the IVIG-derived Ro52, Ro60, and La autoantibodies declined to undetectable levels by 45-60 days, but gastric ATPase autoantibodies declined more slowly requiring >100 days until undetectable. Further testing of IgG and/or IgA antibodies against a subset of potential targets identified by published autoantigen array studies of MIS-C failed to detect autoantibodies against most (16/18) of these proteins in patients with MIS-C who had not received IVIG. However, Troponin C2 and KLHL12 autoantibodies were detected in 2 of 20 and 1 of 20 patients with MIS-C, respectively. Overall, these results suggest that IVIG therapy may be a confounding factor in autoantibody measurements in MIS-C and that antibodies against antigens associated with autoimmune diseases or other human proteins are uncommon in MIS-C.


Subject(s)
Autoimmune Diseases , COVID-19 , Lupus Erythematosus, Systemic , Adaptor Proteins, Signal Transducing , Adenosine Triphosphatases , Adult , Autoantibodies , Autoantigens , Autoimmunity , COVID-19/complications , Child , Humans , Immunoglobulins, Intravenous , Ribonucleoproteins , Systemic Inflammatory Response Syndrome
4.
J Periodontol ; 92(10): 1357-1367, 2021 10.
Article in English | MEDLINE | ID: covidwho-1353583

ABSTRACT

Severe acute respiratorysyndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to more than 3.25 million recorded deaths worldwide as of May 2021. COVID-19 is known to be clinically heterogeneous, and whether the reported oral signs and symptoms in COVID-19 are related to the direct infection of oral tissues has remained unknown. Here, we review and summarize the evidence for the primary infection of the glands, oral mucosae, and saliva by SARS-CoV-2. Not only were the entry factors for SARS-CoV-2 found in all oral tissues, but these were also sites of SARS-CoV-2 infection and replication. Furthermore, saliva from asymptomatic individuals contained free virus and SARS-CoV-2-infected oral epithelial cells, both of which were found to transmit the virus. Collectively, these studies support an active role of the oral cavity in the spread and transmission of SARS-CoV-2 infection. In addition to maintaining the appropriate use of personal protective equipment and regimens to limit microbial spread via aerosol or droplet generation, the dental community will also be involved in co-managing COVID-19 "long haulers"-now termed Post-Acute COVID-19 Syndrome. Consequently, we propose that, as SARS-CoV-2 continues to spread and as new clinical challenges related to COVID-19 are documented, oral symptoms should be included in diagnostic and prognostic classifications as well as plans for multidisciplinary care.


Subject(s)
COVID-19 , Humans , Mouth , Mouth Mucosa , SARS-CoV-2 , Saliva
5.
iScience ; 24(9): 102960, 2021 09 24.
Article in English | MEDLINE | ID: covidwho-1347672

ABSTRACT

Current conventional detection of SARS-CoV-2 involves collection of a patient's sample with a nasopharyngeal swab, storage of the swab during transport in a viral transport medium, extraction of RNA, and quantitative reverse transcription PCR (RT-qPCR). We developed a simplified preparation method using a chelating resin, Chelex, which obviates RNA extraction during viral testing. Direct detection RT-qPCR and digital droplet PCR were compared to the current conventional method with RNA extraction for simulated samples and patient specimens. The heat treatment in the presence of Chelex markedly improved detection sensitivity as compared to heat alone, and lack of RNA extraction shortens the overall diagnostic workflow. Furthermore, the initial sample heating step inactivates SARS-CoV-2 infectivity, thus improving workflow safety. This fast RNA preparation and detection method is versatile for a variety of samples, safe for testing personnel, and suitable for standard clinical collection and testing on high-throughput platforms.

SELECTION OF CITATIONS
SEARCH DETAIL